INTRODUCCIÓN
La Relatividad, es la teoría desarrollada a principios del siglo XX, que originalmente pretendía explicar ciertas anomalías en el concepto de movimiento relativo, pero que en su evolución se ha convertido en una de las teorías básicas más importantes en las ciencias físicas. Esta teoría, desarrollada fundamentalmente por Albert Einstein, fue la base para que los físicos demostraran la unidad esencial de la materia y la energía, el espacio y el tiempo, y la equivalencia entre las fuerzas de la gravitación y los efectos de la aceleración de un sistema
LA CRISIS DE LA FÍSICA CLÁSICA Y EL ORIGEN DE LA FÍSICA MODERNA
Entre 1861 y 1873 Maxwell realizó la síntesis electromagnética que culmino con su “Tratado de electricidad y magnetismo”, integrando fenómenos considerados hasta entonces sin ninguna conexión: la electricidad, el magnetismo y la óptica. Con ello parecía haberse dado respuesta satisfactoria a los principales problemas que planteaba la ciencia física. A lo largo de dos siglos se había construido así un sólido edificio imponente del que la mecánica newtoniana y la teoría electromagnética eran sus dos más fuertes pilares.
A finales del siglo XIX se consideraba la Física como una ciencia prácticamente elaborada y cerrada, cuyos principios y leyes estaban sólidamente establecidos. La actividad física pensaba que consistiría en aplicar estas leyes y principios a distintos fenómenos. Pero una serie de problemas que no pudieron ser explicados originaron a principios del siglo XX, la crisis de la física clásica, poniendo en cuestión hasta sus conceptos más evidentes y sólidos y el origen de una nueva concepción de la física.
Conviene recordar que la física clásica se construyo contra la visión del pensamiento aristotélico - escolástico, contra la concepción denominada “Física del sentido común” y supuso un profundo cambio metodológico, acompañando al radical cambio conceptual.
1. ELEMENTOS DE RELATIVIDAD
Los “pequeños problemas” a los que la física clásica se enfrentaba sin éxito a finales del siglo XIX, fueron los primeros indicadores de que la física clásica exigía cambios fundamentales. Una de las líneas de investigación, que contribuyo a provocar la crisis de la física clásica, marcando sus limites de validez, fue la Teoría General de la Relatividad. A continuación abordaremos algunas de las principales ideas de la física relativista y sus principales implicaciones.
1.0. FENÓMENOS QUE NO SE EXPLICAN CON LA FÍSICA CLÁSICA. CRISIS DE LA MISMA Y ORIGEN DE LA FÍSICA MODERNA
A comienzos del siglo XX la Física iba a experimentar una crisis profunda en la que jugaría un papel especial la teoría especial de la relatividad o de la relatividad restringida , que es la única que trataremos aquí (no abordaremos por tanto la teoría general de la relatividad).
1.1. FRACASO EN LA DETECCIÓN DE UN SISTEMA DE REFERENCIA EN REPOSO ABSOLUTO.
La génesis de la teoría de la relatividad puede asociarse con un problema presente desde antiguo en la historia de la Ciencia: el de la existencia del espacio absoluto:
1.2. LOS POSTULADOS BÁSICOS DE LA RELATIVIDAD ESPECIAL.
El principio de relatividad de Galileo establece, de acuerdo con toda nuestra práctica habitual, que no existen diferencias entre los fenómenos mecánicos que ocurren en marcos de referencia en reposo o en movimiento rectilíneo uniforme uno respecto al otro, lo que le llevo al propio Galileo a enunciar el llamado principio de relatividad de Galileo: “Las leyes de la mecánica no se modificaban al referirlas a un sistema en reposo o que se mueva con movimiento rectilíneo uniforme con respecto al observador”
Nada pues permite diferenciar, desde un punto de vista mecánico a un sistema en reposo absoluto de otro que se desplace con movimiento uniforme: “las leyes de la mecánica resultan ser las mismas”
El experimento realizado por Michelson y Morley trataba de poner de manifiesto la existencia de un marco especial de referencia en reposo absoluto ( “el éter”) a partir de fenómenos ópticos. El fundamento del mismo estriba en tomar en consideración el Movimiento de la Tierra con respecto al eter, que podía considerarse uniforme para intervalos de tiempo pequeños (dado el gran radio de curvatura de su trayectoria 150 millones de km)
Un rayo de luz lanzado en la dirección del movimiento de la Tierra, debe ser retardado por el flujo del éter en unos 30 km/s (velocidad de la Tierra) y obtener c1=299.970 Km/s
• Un rayo de luz lanzado a favor de la corriente del éter. Tendría una velocidad mayor que c de 30 km/s (velocidad de la Tierra) Y obtener c2=300.030 Km/s
• Pero no obtenían ninguna diferencia. El resultado era siempre negativo
Para la velocidad de la luz, no se cumplía la clásica ley de adición de velocidades y el éter no tenia una existencia real
Aceptando que la Tierra se mueve en el espacio (es decir en el seno del éter inmóvil) con una velocidad v. El tiempo que tarde la luz en recorrer una cierta distancia sobre la Tierra dependerá de la dirección en que la luz recorra dicha distancia, por sumarse vectorialmente la velocidad de la luz y la de la Tierra. Michelson y Morley diseñaron un ingeniosos montaje (interferometro) para poner de manifiesto las diferencias previstas de tiempo, con que la luz alcanza cierta posición, según el movimiento relativo de la Tierra con respecto al éter. Pero se obtenía siempre un resultado negativo: “no se apreciaba diferencia alguna en el tiempo”
|
Los dos postulados de la Relatividad restringida o relatividad especial (1905)
DO
1. Las leyes de la naturaleza tienen la misma expresión en todos los SRI.
2. La velocidad de la luz en el vacío es constante para todos los observadores (c=cte)
Esto explicaba el resultado negativo del experimento de Michelson y Morley y la constancia de la velocidad de la luz tenia algunas importantes consecuencias:
El tiempo es relativo (Dilatación): Δt = g· ΔtP
El espacio es relativo (Contracción): LP= g·L
|
Aceptando que la Tierra se mueve con respecto al éter con velocidad v y siendo c La velocidad de la luz, calcular el tiempo en que la luz emitida por el foco F alcanzara la pantalla P, situada a una distancia d en cada uno de los casos esquematizados. (v representa la velocidad de la Tierra y por tanto la velocidad de los objetos situados sobre ella con relación al supuesto éter)
[Solución: a) ; b) ] |
Del resultado negativo del experimento de Michelson y Morley, repetido con todo tipo de precauciones, se concluía que había que rendirse a la evidencia “ La velocidad de la luz no se veía afectada por el movimiento de la Tierra con respecto al éter”. O sea que: “la velocidad de la luz para todos los observadores cualquiera que fuera su velocidad con respecto al éter era siempre la misma c”
¿Cómo explicar el resultado inesperado del experimento de Michelson para hacerlo compatible con las teorías vigentes, que poseían una sólida base experimental y estaban tan solidamente establecidas?
Todo intento de explicar este resultado evidente: “la velocidad de la luz en el vacío es siempre la misma, independiente mente de la velocidad del observador o de la fuente luminosa” en el marco de la física clásica (hipótesis de arrastre del éter, etc.) llevarían al fracaso.
Einstein generaliza este resultado afirmando que “las leyes de la física son las mismas para todos los sistemas que se mueven con movimiento uniforme con respecto al observador” lo que constituye su principio de la relatividad especial, basado en los resultados negativos de evidenciar el movimiento absoluto.
Obtener la relación entre los tiempos en el siguiente caso: Sean dos relojes de luz Ay B, formados cada uno de ellos por dos espejos paralelos separados una distancia d, donde t es el tiempo necesario para que un pulso luminosos que parte del fondo incida en el espejo superior (d=c.t) : Cada vez que la luz incide sobre un espejo se tiene un “tic del reloj” . El reloj B se desplaza con respecto al A con velocidad v. Si nosotros permanecemos solidarios del reloj A, observaremos que el camino recorrido por el rayo luminoso en B, desde la base inferior hasta incidir en la superior , es mayor que el que recorre en el reloj A. Y como la velocidad de la luz es siempre la misma c (como ha quedado establecido, el tiempo t´será mayor que el t. Es decir que el reloj B se retrasara con respecto al A, para un observador solidario con A. Para uno solidario con B, será el reloj A el retrasado.
Obtener matemáticamente a partir de la situación descrita en la figura la relación entre t´ y t y explica como esta diferencia de tiempos entre t´ y t viene a compensar lo que predecía la experiencia de Michelson, dando cuenta del resultado negativoencontrado |
[Sin más que aplicar el teorema de Pitágoras al triángulo de la figura se obtiene: (ct´)2=(ct)2 + (vt´)2 . De donde sacando factor común t´y despejando se llega a la famosa ecuación: ]
1.3. ALGUNAS IMPLICACIONES DE LA FÍSICA RELATIVISTA
Las ecuaciones de transformación galileana no son validas, ya que parten del carácter absoluto de la escala temporal, que sería la misma en cualquier sistema, en contra de toda la evidencia experimental que llevo al principio de la relatividad especial. La correspondencia entre las coordenadas (x´, y´, z´, t´) de (x,y,z,t) fue establecido por Lorentz :
La importancia de la teoría de la relatividad no se limita a dar cuenta de los hechos experimentales que estén en su base, sino que de ella se siguen gran número de implicaciones, cuya verificación dará a las hipótesis iniciales el carácter de una teoría firmemente establecida. Implicaciones teóricas que permitan una mejor comprensión del mundo físico e implicaciones prácticas, que abrirán el camino a una mayor utilización de la naturaleza: Dos importantes consecuencias que están en la base de la teoría son la dilatación del tiempo y la contracción de la longitud.
Explica y justifica a partir de las transformaciones de Lorentz la contracción de la longitud para un sistema en movimiento con respecto a otro. Demuestra que esta diferencia solo adquiere importancia para velocidades próximas a las de la luz.
Explica y justifica a partir de las transformaciones de Lorentz la dilatación temporal para un sistema en movimiento con respecto a otro. Es decir que el intervalo entre dos sucesos es diferente si se mide desde dos sistemas de referencia distintos con una velocidad relativa v. Demuestra que esta diferencia solo adquiere importancia para velocidades próximas a las de la luz.
Si t es el tiempo propio de un suceso, medido desde su sistema de referencia S, al medir ese suceso desde un sistema de referencia S´, en movimiento respecto a S, el intervalo de tiempo que medimos en el Sistema en movimiento, S´, es más largo. Este efecto se denomina dilatación del tiempo.
Cuanto más cerca de la velocidad de la luz se viaja, mayores son estos efectos y es posible la llamada paradoja de los gemelos: para un hermano que haga un viaje a una velocidad cercana a la de la luz el tiempo pasa más lentamente que para el que se queda en la Tierra, y envejece menos.
La paradoja de los gemelos es un experimento pensado en el que dos gemelos tienen una percepción del tiempo diferente. Uno hace un largo viaje a una estrella, y otro se queda en la Tierra. A la vuelta, el gemelo estelar es más joven que el que se quedó. La explicación se basa en la dilatación del tiempo predicha por la teoría especial de la relatividad.Se denomina dilatación del tiempo a un fenómeno observado por la teoría de la relatividad en el cual el tiempo medido por un observador en un sistema que está en movimiento uniforme con respecto a otro, es mayor que el tiempo que mide este sistema para los eventos que ocurren en él. Debe entenderse este fenómeno como una consecuencia real del principio de invarianza de la velocidad de la luz y no como un fenómeno aparente.
El intervalo de tiempo medido por un observador para el cual los extremos del intervalo ocurren en el mismo punto espacial, se denomina tiempo propio. Todo observador que esté en movimiento uniforme con respecto al observador propio medirá un intervalo de tiempo mayor para el mismo intervalo espacio-temporal.
Se dice entonces que un reloj en movimiento "atrasa" con respecto a un reloj estacionario, y esta diferencia se puede calcular mediante la siguiente ecuación:
Se puede observar que cuando las velocidades son pequeñas: v<<< c
Sin embargo, cuando las velocidades son muy grandes, próximas a la velocidad de la luz v @ c
,
y se tiene que .
'
Para que se cumpla el principio de conservación de la cantidad de movimiento, en una transformación de coordenadas, la masa de un cuerpo ha de variar con la velocidad según la ecuación:
en donde m0 es la masa en reposo, es decir la masa medida por un observador respecto del cuál la partícula esta en reposo. Mostrar que la masa de un cuerpo puede considerase constante, tal como suponía la mecánica clásica si su velocidad es pequeña comparada con c.
La relación de la variación de la masa con la velocidad puede interpretarse como un incremento de la masa que tiene lugar al comunicar energía al cuerpo
En la mecánica relativista la relación entre la energía y una velocidad dada viene dado por:
La masa no se puede convertir en energía. En las reacciones nucleares, con “defecto de masa” lo que tiene lugar es el paso de una forma de materia (las partículas) a otra forma de materia (los fotones del campo electromagnético, etc.). En cada uno de estos procesos la materia total (no solo la existente en forma de partículas) se conserva y se conserva asimismo la energía total. Hay simplemente una liberación de energía existente en forma potencial, acompañada del paso de la materia de un estado a otro. No existe la energía sin sustrato material, por lo que cualquier aumento de energía supone necesariamente un aumento de la masa. De aquí la proporcionalidad de la relaciónE=m.c2.”
Energía relativistaEn la expresión de la energía relativista, m0·c2 es la energía de la partícula en reposo. dado que m0·c2 es constante, no depende del sistema de referencia desde el que se mida; por tanto, la diferencia: E2 - p2c2 también lo es. Cuando la partícula esta en reposo, p=0. En este caso, de acuerdo con la expresión matemática: E= m0·c2 Para una partícula en reposo, su energía es, precisamente, la energía en reposo, asociada a ella. Observa, además, que si la masa en reposo de la partícula es nula, como ocurre con el fotón, de la expresión anterior se deduce que sus energía es: E=p·c |
En 1905 Albert Einstein modificó las nociones de espacio y tiempo de Newton, con la relatividad especial o restringida.
En 1915 la teoría de la relatividad general reemplazó la idea newtoniana de la gravedad como atracción entre todos los cuerpos masivos, mostrando que la gravitación es el efecto de la curvatura espacio-tiempo producida por la materia y la energía